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Aerodynamic Maneuvering Hypersonic F l i g h t  Mechanics 

1. I n t r o d u c t i o n  
The emergence of cur r e n t  high-interes  t missions i n v o l v i  ng aer maneuver i ng 

hypersonic  f l i g h t  h a s  given r ise t o  t h e  corresponding need for  prel iminary 
des ign  and performance ana lyses  of such  vehic les .  
motivated e f f o r t s  t o  develop simplified a n a l y t i c a l  and computational methods f o r  
parametric a n a l y s i s  of maneuverAny hypersonic  f A g h t  under condi t ions  
a p p r o p r i a t e  t o  the  mission involved. The missions of i n t e r e s t  inc lude  those of 

a i r c r a f  t, e.g. , t h e  Orient  Express, and hybrid or "spaceplane" v e h i c l e s ,  e.g. , 
t h e  s ing le-s tage- to-orb i t  o r  t ransatmospheric  Vehicle (TAV) , and t h e  

aeroassisted spacecrai ' t  s u c h  as t h e  Aeroass i s ted  O r b i t a l  Transfer V e h i c l e  

(AOTV). 

h igh [lac5 nuinber, ana a r e  c h a r a c t e r i z e d  ty protracted g loba l -sca le  maneuvers. 
Under these condi t ions ,  t h e  t r a j e c t o r y  may be s i g n i f i c a n t l y  affected by 
ro ta t ing-Ear th  and Earth-curvature e f i e c t s  i n  a d d i t i o n  t o  t h e  primary balance of 

g r a v i t y ,  t h r u s t ,  and aerodynamic f o r c e s .  I n  addi t ion ,  t h e  c h a r a c t e r i s t i c  
t r a j e c t o r y  parameters as well as t h e  a s s o c i a t e d  Coordinate system i n  which t h e  
t r a j e c t o r y  is described require e v a l u a t i o n  s i n c e  a i rc raf t  r e l a t e d  parameters and 
frames of r e f e r e n c e  a r e  t y p c a l l y  d i f 2 e r e n t  :ron tnose  of o r u i t i n g  spacecrafk and 
r e e n t r y  t r a j e c t o r i e s .  

The purpose of this s tudy  was t o  develop s i m p l i f i e d  a n a l y t i c a l  methods f o r  
parametric a n a l y s i s  of hypersonic maneuvering f l i g h t .  
review of d i f i e r e n t  formula t ions  of t h e  genera l  equat ions  of motion, t h e i r  

associated coord ina te  frames, v a r i o u s  s i m p l i f i c a t i o n s  of t h e  equat ions,  and 
previous ly  achieved a n a l y t i c a l  s o l u t i o n s .  This  s t u d y  sought  t o  both extend 
previcus s o l u t i o n  methods and t o  develop new ones. 
t h e  l i terature  and developing a sys temat ic  p e r s p e c t i v e  on t h e  knowledge i t  

r e p r e s e n t s  proved t o  be a major p o r t i o n  of t h e  e f f o r t .  

T h i s  need i n  t u r n  has 

These missions f e a t u r e  aeronaneuvering f l i g h t  a t  high a l t i t u d e s  and 

The e f f o r t  includeu a 

I n  a d d i t i o n ,  e v a l u a t i o n  Gf  

2 .  Background 

2.1 Literature Categor iza t ion  

A review of t h e  hypersonic maneuvering-fl ight l i t e ra ture  involves  

ca tegor  i z a t  i on i n t o  p lanar  /nonplanar s t u d i e s ,  s t u d i e s  i nc ludi  ng/excludi ng 
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propulsive t h r u s t ,  and studies us ing  an Earth-fixed wind axes coordinate frame 
or Earth-centered spherical coordinate frame or orbi ta l  axes/elements frame. 
Also, the varied assumptions of maneuver constants and equation transformations 
employed i n  t h e  previous studies are  of interest .  
ea r l i e r  studies involving ba l l i s t i c  reentry vehicles and s tudies  focussing on 
the gui dande/navi ga ti on/contr ol optimization of hyper sonic maneuve r i  ng f 1 i gh t . 
References 1 - 3 a re  examples of general s tud ies  presenting f u l l  derivation of 
t h e  equations of motion w i t h  both analytical and computational solutions. 
Shkadov, e t  a l l  t r ea t  propelled a i r c ra f t  as well as  thrustless maneuvering 
descent from orbi t ,  both w i t h  Coriolis effects excluded. 
various cases of thrustless l i f t i n g  and nonlifting reentry, again w i t h  Coriolis 
e f fec ts  excluded from analytical solutions. 
equations of motion, and t h e n  exclude from analytic solutions Coriolis effects  
as  well as  t h r u s t i n g  during reentry. 
thrusting maneuvering hypersunic f l i g h t  is found i n  References 4 through 13 .  

References 4 - 10 focus on the nonplanar (turning) "aerocruise" maneuver where 
thrust  continually cancels drag. References 11 - 13 deal w i t h  simplified 
analytical  solutions for planar inaneuvering Transatmospheric vehicle (TAV) 
f l i gh t .  The p ro l i f i c  nonthrusting or "aerogliding" l i t e r a tu re  includes 
References 13 through 27 and 36 for nonplanar f l i g h t  and References 28 through 

34 for planar f l i g h t .  Reference 35 provides a general theoretical formulation 
applicable t o  a l l  k i n d s  of missions. 

Excluded from t h i s  review are  

Loh2 t r e a t s  the 

V i n h ,  e t  a13 derive the f i l l1  

The scarce l i t e r a tu re  dealing w i t h  

EQ fa r  t h e  majority of the l i t e ra ture  employs a wind axis  coordinate frame 
i n  which t h e  equations of motion are expressed. 
expressed i n  a spherical coordinate frame i n  References 5, 8, 15 and 29, and i n  
an orbi ta l  element frame i n  References 9 and 10 ;  t h e  frarnes employed are not  

obvious i n  References 12 and 24. Finally, pure computational solution 
techniques a re  used i n  References 6, 7, 12, 19 through 24, 29, 30, 33 through 
36. All other references t o  some extent provide analytic solutions, some w i t h  

computational solutions for comparison. None of t h e  references employing wind 

axis  coordinates and providing analytical solutions include Coriolis effects  on 
the trajectory and vehicle performance. Further, analytic-solution references 
show a bewildering variety of parameters chosen as the independent variable of 
differentiation i n  the transformed different ia l  equations of motion that  
f a c i l i t a t e  analytical  solutions. Variables are  used such  as f l i gh t  path 
angle 8 ,  time t, and distance along t h e  trajectory s. 
also show a large variety of assumptions on constant parameters during 

maneuvering f l i g h t :  References 4 and 7 hold velocity v and al t i tude (and t h u s  

As exceptions, equations are  

These analytic references 
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density) constant during t h e  turn, References 4 ,  6 and 7 bank anglea ,  and 
References 4, 7, 11 and 13 dynamic pressure q. 

3.  General Equations of Motion - Different Forinulations 

3.1 Eartkf ixed Geographical Frame 

V i n h ,  e t  a l l  provide a general formulation for t h e  nonplanar equations of 

motion i n  an Earth-fixed rotating frame where thrust and aerodynamic forces 
( l i f t  and drag) are  included. The reference plane is t h e  equatorial plane, so 
that vehicle position is described i n  l a t i  tude/longitude/alti tude coordinates 
(geographical coordinates). These equations comprise a determinate s e t  of three 
dynamical and three kinematical equations i n  s i x  unknowns as follows: 

TO,(-= 
E =  

The equations assume a spherical, rotating Earth, and out-of-plane force is 
generated by banking the l i f t  force. I n  the  dismssion of these equations, t h e  

various contributing "acceleration" term or effects  are referred to  as  l i f t  

(L/m) , drag (D/n) , t h r u s t  W i n ) ,  gravity (g )  , centrifugal (V2/r) , Coriolis 

( 2 0  VI , and Eartk-centrifugal ( ~ 2 ) .  The l a s t  two are  "Earth-rotation" 

effects ,  while t h e  centrifugal term V2/r is due t o  f l i g h t  path curvature. 
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Table 1 estimates the order of magnitude ( i n  g u n i t s )  of each of these 

contributing teriils for  a variety of missions. 
the Earth centrifugal terms (&I may be neglected for a l l  missions, the 
Coriolis term should be retained for high-altitude, hypersonic global-scale 
missions such as the TAV and the AOTV. T h i s  term is not retained i n  any of the 
ear l ier  studies reporting analytic soiutions t o  t h e  equations. The development 
of corresponding anaiytical solutions where the Coriolis term is retained has 
been a chief focus of the present work. I t  is of particular interest  t o  compare 
accelerations i n  g u n i t s  as a function of tlach number for (gravity + 
centrifugal) , Coriolis, and Earth-centrifugal effects  (Table 2) It is seen that  
the Earth-centrifugal efzect is always neglectable, but Coriolis is 10% or m r e  
0: the sun (gravity t centrifugal) a t  tlach nmmrs of 15 ana above (abodt 5% a t  

I t  becomes obvious that although 

J.i = ti). 

F i n d l y ,  Lquations 1 - 3 degenerate t o  those employed. i n  much of the 
planar-2iight analytic-solution l i t e ra ture  (References 11 - 1 3 )  when a l l  the 
Earth-rotation effects  are neqiected (ana E ,c = 0)  : 

The V i n i i  fcrmulation involves Earth-f ixea l a t i  tude/longitude, i .e. ,  
geographical coordinates, and is a natural formlat ion for  L’arth-relative motion 
i n  nomaneuvering reentry. The equatorial plane is the reference plane, makiny 
aownrange/crossrange maneuvers very difzicul t  t o  express and visualize by means 
of t h i  s f or mu 1 a t  i on. 

3.2 Orbital Frame 

Cervisilo presents a succinct sumary of the equations for motion assuming 
a spherical nonrotating Earth and expressed i n  terms of the variation of orbi ta l  
elements caused by aerodynamic forces. 
f irst-order,  nonlinear different ia l  equations i n  term of time derivatives of 

the orbital  elements: 

These equations are  coupled, 
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I n  t h e  absence of lift, drag, and thrust forces, these  equations describe a 

Analytic and computational solutions b u i l t  on t h i s  framework have conic orbit .  
largely been restricted to  aerocruise and g l id ing  plane-change (inclination 
change) maneuvers whose application of interest  is t o  AOTV-like missions. 

Clearly, t h i s  formlat ion expresses t h e  modification of orbital  motion 
I t  is a natural formulation for produced by transient aerodynamic forces. 

spacecraft maneuvers involving sk ip t ra jec tory  passage through the atmosphere. 

I t  uses as t h e  reference plane the  original orbital  plane, which is 
Earth-centered (and equivalent t o  a great-circle ground track).  Thus, 

naneuver-produced dawnrange/crossrange aeviations are more eas i ly  expressed w i t h  

t h i s  fornulation than w i t h  the previous one. However, the motion is iner t ia l ly  
referenced, so that Earth-relative motion is not e a s i l y  expressed or visualized 
i n  t h i s  case. 



3 . 3  Crossrange/Downrange Earth-Fixed Formulation 

Ikawa35 has  provided a useful formlat ion of t h e  equations of motion that 
expresses Earth-relative motion i n  coordinates that use as t h e  reference plane 
t h e  i n i t i a l  orbi ta l  plane (or heading plane for atmospheric venicles). 

f ornulation leads naturally t o  downrange/crossrange motion solutions and 
visualization. 
aeronaneuvering missions. The formulation describes orbital  (conic) motion i n  
t h e  absence of thrust and aerodynamic forces. I t  was im2lenented on an IBil  PC 

host microcorputer, and Ikawa describes accurate solutions for several 
dis t inct ly  difLerent missions: 1) orbital  motion and ground track for tvo 
different oruits including a 24-hour, 600 inclination orbit ;  2 )  reentry 
missions i n c l u d i n g  a synergetic orbit  piane-change naneuver, and a more general 
nission of &orbit-to-land from e l l i p t i c  LEO u s i n g  aermaneuvering; ana 3 )  a 
cross-cwntry subsonic commercial aircraEt f l ight .  

T h i s  

As such, i t  is probably t h e  most useful formlat ion for 

The wenera; equations of notion developed i n  t h i s  fornulation are as 
follows : 
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4. Soiutions t o  Form of t h e  General Equations 

4.1 General Soiutions 

Trajectory solutions have been achieved c q u t a t i o n a l l y  i n  t h e  past for a l l  
types of missions - orbi ta l  motion and maneuvers, aeromaneuvering skip 
t ra jector ies  (orbit-to-orbit) , nomaneuvering and maneuvering orbit-teground 
(reentry),  s i n g l e  ana muiti-stage ascent t o  orbi t  (maneuvering and 
nonmaneuvering) , and hypersonic maneuvering a i rc raf t  f l igh t .  Hyprsonic 
a i rc ra i t ,  ascent, and orbit-to-ground (reentry) simulations typically u t i l i z e  
t h e  wind-axis, Earth-relative geqraphical coordinates formulation, e.g. ,  

Equations 1 - 3 .  Orbit-to-orbit simulations either use t h i s  sane formuiation or 
the perturbation-in-orbital-elements formlation, e.g., Equations 6 - 11. 

It  would ap,pear that  a l l  maneuverable misssions, except perhaps 
orb i t - teorb i t ,  w w l d  more easily be visualized and studied parametrically when 

eirpesseci i n  downrancje/crossran5e notion coordinatss, and t h i s  is the u t i l i t y  

afr‘cjraed by the f orladlation of Ikawa. 35 
Analytic solutions t o  sim2lified f o r m  of t h e  general equations have also 

been developed i n  many s t u d i e s  over t h e  years. The most prevalent (and most 
reievant) solutions are  those developed for forms of the planar wind-axes 
ec;uations under various f l i gh t  conditions. To describe and summarize these 
l i t e r a tu re  resul ts  would require a very lengthy discussion. 

Instead, t h e  few resul ts  achieved i n  t h e  present study w i l l  be discussed 
since they represent extensions of some of t h e  previously reported analytic 
soiutions. 

4.2 Analytic Solutions 

4.2.1 Shallow-angie Hypersonic TAV C l i m b  

Tauber and Adelman13 s t u d i e d  t h e  f l i g h t  mechanics of a shallow-angle 
hypersonic climb of a TAV on t h e  way t o  orbit. 
were l)%!!iso that  Cbr’i X i 

1 2  pressure ; and 3 )  planar f l i gh t  ( e ‘ =  constant). Under these conditions, 
Equations 1,2 reduce t o  (w i% 6=0)  

The assumptions of t h e  analysis 
; 2) constant acceleration &and dynamic d t  
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'fie Tauber and Adelman a n a l y s i s  neglected C o r i o l i s  term so t h a t  Equations 15, 

The s t u d y  Qent on t o  determine s e v e r a l  a n a l y t i c  r e s u l t s  i n c l u d i n g  t h e  fo l lowing  
express ion  for f u e l  f r a c t i o n  as a f u n c t i o n  of propuls ion  average s p e c i f i c  
imuulse and v e h i c l e  averaqe l i f  t/dracc ratio:  

I n  t h e  p r e s e n t  s tudy ,  a corresponding approximate result h a s  been developed 
where t h e  C o r i o l i s  e f f e c t  is included. Consider t h e  fo l lowing  equiva len t  
assumptions t o  those  made i n  t h e  'l 'aukr and Adelman s t u d y : l )  Y = c o n s t a n t a l  and 
cosVrl; 2 )  p l a n a r  f l i g h t  cr = 0 and co%ant  heading Y . I n  t h i s  case ,  Equations 

15, 1G i n c l u d i n g  t h e  Coriolis e f f e c t  become 

or - 

The Tauber and Adelman s t u d y  der ived  t h e  r e l a t i o n  

A s  i n  t h e  prev ious  s tudy,  t h e  ;eson;ble assumption is mde of average va lues  of 
L/D and s p e c i f i c  impulse dur ing  hypersonic ascent .  Fur ther ,  i t  is h e r e  assumed 

t h a t  cos@& cons tan t ,  which is a r e s t r i c t i v e  assumption implying e i t h e r  small 

latitude changes or f l i g h t  near t h e  equator. With t h e s e  assumptions ( a l l  but 

t h e  assumption on cos? are also assumptions i n  t h e  prev ious  s t u d y ) ,  Equation 21 

T h i s  result is t h e  extension-oE t h e  earlier result (Equation 17) where an  
approximation t o  t h e  Coriolis e f f e c t  is nmi included.  
t h e  approximation i n  Equat ion a r e p r e s e n t s  a maxinum Coriolis effect? 

shows plots for Equat ions 1 7  and a, and it  i n d i c a t e s  t h a t  t h e  Coriolis effect 
reduces t h e  average s p e c i f i c  impulse requirement for f i x e d  m f / m i  by 4 to 

'7%. For f l i g h t  a t  h igher  l a t i t u d e s  (or g r e a t e r  l a t i t u d e  changes) ,  t h e  r e d u c t i o n  
w i l l  be less proiiounced, i.e., t h e  corresponding plot will l i e  between t h e  two 

It should  be n t e d  t h a t  
@he* 8s 1 

Figure  1 
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4.2.2 Hypersonic Gl id ing  Turn 

A second e x t e n s i o n  t o  previous  results was achieved i n  terns of inc luding  
C o r i o l i s  effects ( i n  an  approximate way) i n  a basic r e l a t i o n  between heading 
change and v e l o c i t y  change during a hypersonic g l i d i n g  turn .  S l y e l 4  developed 

y =  L CQ - v; 
b v a t h e  r e l a t i o n  

where heading y= 0 and v e l o c i t y  V = V i  a t  t h e  beginning of t h e  tu rn ,  D = drag 

force, Y = side ( la teral  f o r c e )  = (L/D)Sin6  i f  produced by v e h i c l e  bank angle  a: 
S l y e  der ived  t h i s  resdlt under t h e  condi t ions  of no t h r u s t ,  shallow f l i g h t  pa th  
angle  ( g e l ) ,  m g s i n T a D ,  cons tan t  L/D, and c o n s t a n t  Y/D. This  r e l a t i o n  was 
used by Tauber and Yang25 t o  derive an equi l ibr ium g l i d e  r e l a t i o n  between 
a l t i t u d e  and heading, and then t o  produce a s o l u t i o n  for c o n s t a n t  bank angie  
which minimizes v e l o c i t y  loss i n  t h e  tu rn .  

The result given by Equation 23 is obtained by n e g l e c t i n g  two terns i n  t h e  

complete lateral-f orce d i f f e r e n t i a l  equat ion  of motion (Equation 3 ) .  

neglec ted  t e r n  is t h e  curved f l i g h t  path c e n t r i f u g a l  term ( ~ ' c o ~ c a s t +  b.,q ) ,  

and n e g l e c t i n g  i t  amounts t o  assuming n e g l i g i b l e  magnitude, perhaps due t o  
r e s t r i c t i o n  t o  near  e q d a t o r i a l  l o c a t i o n s  (small@ 1 .  The second neglected t e r n  
is t h e  Coriolis term [ awV (**~os4sinY-S;n $J I .  
approximate result conta in ing  t h e  Coriolis t e r n .  
by Slye,  Equat ions 1 - 3 becane 

The f i r s t  

c 

The p r e s e n t  s t u d y  obtains an 
Under t h e  condi t ions  assumed 

h P ! ,  L c o s c - e - ~ ) k + ~ W V h ~ J ~ C O S y  
r t t  

@ 
If t h e  independent v a r i a b l e  is changed from time t o  d i s t a n c e  a long  t h e  

which, upon s u b s t i t u t i o n  i n t o  Equations *-a, g i v e s  
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Dividing Equat ion 29 by Equation 27 g i v e s  
d V = - du ' s i * = -  mVlcos+*q + 'mb"(5coJqJj,, Y-s;*c&) v L T  D k  b 

T h i s  equat ion  may be i n t e g r a t e d  t o  g ive  very  approximate results i f  average 
values (over t h e  i n t e g r a t i o n  v a r i a b l e  v e l o c i t y  V) are assumea f o r  t h e  
products /d i f fe rences  of t r igonometr ic  f u n c t i o n s  of heading W and 1atitudeQ. 

F u r t h e r ,  a n  order-of-magnitude a n a l y s i s  shows t h a t  i n  
e q u a t i o n  30, t h e  C o r i o l i s  term is second order, while t h e  ( 1 2  - V$ 1 term is 
first-order, comparable t o  t h e  l n ( V $ / l . @  t e r n .  Thus, Equation 30 simplifies t o  

Figure  2 shows comparable p l o t s  of Equations 23 and 31 where average l a t i t u d e ,  
heading v a l u e s  of 300 and 200, r e s p e c t i v e l y ,  have been assumed i n  Equation 
31. Unfortunately,  t h e  subsequent r e l a t i o n s h i p s  der ived  from Equation 23 by 
Tauber and Yang25 are d i f f i c u l t  t o  parallel  when beginning with Equation 31. 

L s i e s e ,  vr k"(C0 f **s)(v4 a- V i )  G3 Y$- 'ui = b T + acb 

Ikawa36 h a s  examined ro ta t ing-Ear th  e f f e c t s  on AOTV t r a j e c t o r y  
s imula t ions ,  and has concluded t h a t  they are s i g n i i f i c a n t  (see conclusions of 

t h e  p r e s e n t  s t u d y  below). 

5. Conclusions and Recommendations 

The research perf orned during this effor t  involved both an e v a l u a t i o n  and 
organiz ing  of a rather w i d e  l i t e ra ture  and t h e  techniques and solutions 
presented  t h e r e i n ,  and attempts to  develop new a n a l y t i c a l  solution methods for  
parametric a n a l y s i s  of v e h i c l e  performance and design. 
e v a l u a t i o n  was very successful, but  on ly  l i m i t e d  success was achieved with 
ex tending  previous  a n a l y t i c a l  solution methods, and no success w i t h  developing 
completely new methods. 

The l i terature 

It is be l ieved  t h e  most important c o n t r i b u t i o n  of t h i s  research  is t h e  
fo l lowing  set  of conclusion:  

1) The best formula t ion  of t h e  governing equat ions  for c u r r e n t  missions of 
interest appears to  be t h a t  of Equations 12 - 14: t h e  plane of 
r e f e r e n c e  is t h e  i n i t i a l  heading plane,  t h e  motion is Ear th- re la t ive ,  



and t h e  motion of t h e  maneuvering hypersonic v e h i c l e  is e a s i l y  
expressed and v isua l ized  i n  crossrange/downrange coord ina tes .  

2 )  These equat ions  can and should be implemented (and optimized for s o l u t i o n  

speed) on modern, high-speed, high-resolut ion graphics  engineer ing  
workstations. 

3 )  Parametr ic  d e s i g n - r e q u i r e s  high-speed, fas t - turnaround,  u s e r - i n t e r a c t i v e  
workstation-hosted implementation of t h e s e  equat ions  for t r a j e c t o r y  
s imulat ions.  This  appears to  be t h e  only way t o  convenient ly  proceed. 

-I41 I n c l u s i o n  of Coriolis e f f e c t s  by t h e  p r e s e n t  s t u d y  along with t h e  

s t u d y  of Ikawa36 i n d i c a t e s  prev ious  a n a l y t i c  results cwld have 
s i g n i f i c a n t  errors i n  design and performance concl lus ions ,  due t o  
neglec t  of these ef Eects. 
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